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Abstract— Mini Metro, a dynamic subway simulation game, 
mirrors real-world transportation challenges by requiring players 
to connect stations, manage passenger flow, and adapt to evolving 
demands. This study applies graph theory and optimization 
algorithms to model stations as nodes and routes as edges, 
optimizing network performance. Strategies like prioritizing loops 
over linear paths and proximity-based connections were evaluated, 
highlighting their effectiveness in reducing travel time and 
enhancing accessibility. Future work should focus on adaptive 
algorithms and predictive modeling to improve optimization and 
scalability. This research bridges theoretical graph algorithms and 
practical gameplay strategies. 
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I.   INTRODUCTION 
In modern game design, optimization challenges often mirror 

real-world problems, particularly in transportation and logistics. 
The game Mini Metro exemplifies this by simulating the 
creation and management of a subway system. Players must 
connect stations, adapt to dynamically emerging demands, and 
ensure efficient passenger transportation under resource 
constraints. 

 

 
Fig 1. Mini Metro Game  

 
The core of Mini Metro's mechanics aligns closely with graph 

theory, where stations can be modeled as nodes, and routes as 
edges. Solving the problem of optimal pathfinding in such a 
system is not only critical for achieving high scores in the game 
but also provides a microcosm of real-world transportation 
challenges. Traditional optimization algorithms, such as 
Dijkstra's or Minimum Spanning Tree, offer potential solutions 

to these challenges by identifying efficient paths and minimizing 
congestion. 

 

 
Fig 2. Mini Metro Gameplay 

 
This study explores the application of graph analysis and 

strategic gameplay to optimize routes in Mini Metro. By 
simulating gameplay scenarios and applying graph-based 
algorithms, this research aims to uncover strategies that enhance 
network efficiency and provide players with actionable insights. 
Furthermore, it delves into how these strategies adapt to 
dynamic changes, such as the emergence of new stations or 
increased passenger load, replicating the evolving complexities 
of real-world networks. 

Through this exploration, we bridge the gap between 
theoretical graph algorithms and practical game strategies, 
contributing both to game optimization and broader applications 
in dynamic system management. 

 
II.  GRAPH 

A graph is a mathematical structure used to represent 
relationships or connections between objects. It consists of 
vertices (or nodes), which represent the objects, and edges (or 
links), which represent the connections between them [1].  
 

A. Graph Terminology 
a. Adjacent 

Two vertices in a graph are considered adjacent if there is an 
edge connecting them. This indicates a direct relationship 
between the two nodes, such as a direct route between stations 
in Mini Metro. For instance, if Station A is directly connected to 
Station B, these two stations are adjacent in the graph 
representation. 
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b. Incidency 

The relationship between a vertex and an edge is known as 
incidency. A vertex is incident to an edge if it is one of the edge’s 
endpoints. In the Mini Metro network, a station is incident to all 
the routes that pass through it. For example, if a route connects 
Station A to Station B, both stations are incident to the edge 
representing that route. 

 
c. Isolated Vertex 

 
Fig 3. Isolated Vertex 

 
A vertex with no edges connecting it to any other vertex is 

called an isolated vertex. Such vertices represent stations in the 
Mini Metro network that are not part of any route, making them 
inaccessible to passengers. Identifying and minimizing isolated 
vertices is crucial for ensuring a fully connected transportation 
network. 

 
d. Degree 

 
Fig 4. Graph Degree 

 
The degree of a vertex is defined as the number of edges 

incident to it, representing the number of direct connections a 
station has to other stations. In directed graphs, the degree can 
be further classified into in-degree (the number of incoming 
connections) and out-degree (the number of outgoing 
connections). For example, a station connected to three other 
stations would have a degree of three.  
 

e. Path 

 
Fig 5. Graph Path 

 
A path in a graph is a sequence of vertices connected by 

edges, where each edge is traversed only once [2]. In Mini 
Metro, a path corresponds to a passenger’s journey from one 
station to another, passing through a series of connected routes. 
Paths are fundamental for understanding the movement of 
passengers and optimizing their travel times.  
 
 
 
 
 

f. Circuit 

 
Fig 6. Graph Circuit 

 
A circuit is a closed path that starts and ends at the same 

vertex, with no edge repeated [2]. Circuits are commonly used 
in transportation systems to design loop routes, ensuring 
efficient movement across a network. In Mini Metro, a circuit 
represent a line that allows trains to travel around a set of 
stations without the need to reverse direction. 
 

g. Weighted Graph 

 
Fig 7. Weighted Graph 

 
A weighted graph assigns numerical values (weights) to its 

edges, often representing costs, distances, or travel times [3]. In 
Mini Metro, weights can be used to model factors such as travel 
time between stations or congestion levels on a route. Weighted 
graphs are essential for implementing optimization algorithms 
to find the most efficient paths. 

 
B. Euler Path and Circuit 
An Euler Path is a path in a graph that traverses each edge 

exactly once. It does not need to start and end at the same vertex. 
For a graph to have an Euler track all edges in the graph must be 
connected and exactly two vertices in the graph have an odd 
degree [4]. 

 
C. Graph Coloring 

 
Fig 8. Graph Coloring 

 
Graph coloring is the assignment of colors to the vertices of a 

graph such that no two adjacent vertices share the same color. 
This is known as vertex coloring. The minimum number of 
colors required to achieve this is called the chromatic number of 
the graph [5]. In Mini Metro, graph coloring is used to 
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differenciate station shapes so that it optimize the train 
passanger. 
 
 

III.   ALGORITHM 
 An algorithm is a finite set of well-defined instructions used to 
solve a specific problem or perform a computation. In the 
context of graph theory, algorithms are essential for processing, 
analyzing, and optimizing graph structures to achieve desired 
outcomes, such as finding shortest paths, minimizing costs, or 
determining connectivity. 
 

A. Djikstra 
Dijkstra's Algorithm is a well-established method for solving 

the shortest path problem in weighted graphs. Originally 
proposed by Edsger W. Dijkstra in 1956, the algorithm 
efficiently determines the shortest path from a single source 
node to all other nodes within a graph [6]. Its applications span 
diverse fields, including network routing, transportation 
planning, and resource optimization. 

For each unvisited neighbor v of u, calculate the alternative 
distance via u as: 

 
distance[v] = min(distance[v], distance[u] + weight(u,v))         (1) 
 
If this alternative distance is smaller than the current distance, 

update distance[v] and update its position in the priority queue. 
 
 

IV.   RESEARCH METHODOLOGY 

A. Problem Definition 
The Mini Metro game presents a dynamic optimization 

problem, where stations appear unpredictably, and players must 
connect them efficiently while managing passenger flow and 
limited resources. This study seeks to address the following core 
challenges: 

- Designing optimal routes to minimize travel time and 
maximize passenger satisfaction. 

- Adapting to dynamic changes such as new station 
appearances and varying passenger demand. 

- Balancing the trade-offs between shortest paths, resource 
allocation, and network efficiency. 

To address these challenges, the research models the game 
using graph theory, where stations represent nodes, and routes 
represent weighted edges. By analyzing the problem with graph-
based algorithms, the study aims to uncover strategies that 
improve gameplay performance and offer broader insights into 
dynamic system optimization. 

Python libraries that are being used are NetworkX, PyGame, 
Random, and Math 
# Import library 
import pygame 
import networkx as nx 
import random 
import math 

 

B. Data Collection 
Data is collected directly from Mini Metro gameplay and 

replicate in python script. Gameplay data includes station 
locations, passenger destinations, and route configurations. For 
instance, random coordinates from the gameplay are projected 
into the replica, and connections are established based on certain 
algorithm. This dataset serves as the foundation for creating the 
graph representation of the game’s network and testing 
optimization strategies. 

 
# Variables 
 
WHITE = (255, 255, 255) 
BLUE = (0, 0, 255) 
RED = (255, 0, 0) 
GREEN = (0, 255, 0) 
 
station_type = [ 
    'square', 'circle', 'triangle',  
    'square', 'circle', 'triangle',  
    'square', 'circle', 'triangle',  
    'square', 'circle', 'triangle', 
    'unique' 
] 
 
node_positions = { 
    'circle': {}, 
    'square': {}, 
    'triangle': {}, 
    'unique': {} 
} 
 
global_node_id = 1 
global_circle_count = 0 
global_square_count = 0 
global_triangle_count = 0 
global_unique_count = 0 

 
C. Graph Representation 
The collected data is transformed into a graph representation 

using NetworkX, a Python library for graph manipulation. 
 
# Initialization 

pygame.init() 

screen = pygame.display.set_mode((800, 600)) 

graph = nx.Graph() 
 
Nodes represent stations, each assigned attributes such as 

location (coordinates) and type (e.g., circle, square, triangle, and 
unique). 

Edges represent connections between stations, weighted by 
distance and game strategy. For example, a connection between 
two stations is assigned a weight proportional to the Euclidean 
distance between their coordinates. This graph serves as the 
input for various algorithms, enabling the study to simulate and 
analyze the Mini Metro network efficiently. 

 
D. Algorithm and Game Strategy 
There are a lot of game strategy. Game strategy will affect 

algorithm that is going to be used. This game strategy is taken 
from Hamy’s blog, where it talks about with this subject “Mini 
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Metro - 5 Beginner Tips to Reach Top 10% on the 
Leaderboard”. 

There are four main strategy that can be applied to this 
algorithm: 

- Avoid duplicate station 
- Prefer loops to point-to-point lines 
- Prefer line connections on unique stations 

There are generally 4 types of stations: circle, triangle, 
square, and unique shapes like star, plus oval, etc. 

- Connect loops together with express trains 
 
With that, this study requires a specific algorithm, and this is 

the algorithm that is used. 
 
# Algorithm 
 
def calculate_algorithm(): 
    lengths = {} 
    for node1 in graph.nodes: 
        for node2 in graph.nodes: 
            if node1 != node2: 
                pos1 = 
graph.nodes[node1]['pos'] 
                pos2 = 
graph.nodes[node2]['pos'] 
                length = math.sqrt((pos1[0] 
- pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2) 
                lengths[(node1, node2)] = 
length 
 
    circuits = [] 
    used_nodes = set() 
    while True: 
        circuit = [] 
        for shape in ['circle', 'square', 
'triangle', 'unique']: 
            nodes = [node for node in 
node_positions[shape].keys() if node not in 
used_nodes] 
            if nodes: 
                node = nodes[0] 
                circuit.append(node) 
                used_nodes.add(node) 
        if len(circuit) >= 3: 
            circuits.append(circuit) 
        else: 
            break 
 
    for shape in ['circle', 'square', 
'triangle']: 
        nodes = [node for node in 
node_positions[shape].keys() if node not in 
used_nodes] 
        if nodes: 
            node = nodes[0] 
            circuit.append(node) 
            used_nodes.add(node) 
    if len(circuit) >= 3: 
        circuits.append(circuit) 
 
    all_nodes = list(graph.nodes) 
    for i in range(len(all_nodes)): 
        node1 = all_nodes[i] 
        node2 = all_nodes[(i + 1) % 
len(all_nodes)] 
        pos1 = graph.nodes[node1]['pos'] 

        pos2 = graph.nodes[node2]['pos'] 
        if node1 not in used_nodes or node2 
not in used_nodes or 
graph.nodes[node1]['shape'] == 'unique' or 
graph.nodes[node2]['shape'] == 'unique': 
            pygame.draw.line(screen, WHITE, 
pos1, pos2, 2) 
            graph.add_edge(node1, node2) 

 * full algorithm is in github repository in Chapter VII 

 
E. Visualization 
Visualization using PyGame to minimize the randomness of 

the station generated and the user can adjust where the station 
will appear. The algorithm is also called each time the station 
appeared. 

 
# Visualize 

 

while True: 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            pygame.quit() 

            exit() 

        elif event.type == 

pygame.MOUSEBUTTONDOWN: 

            if event.button == 1:  

                add_station(event.pos) 

                draw_graph() 

                calculate_algorithm() 

    pygame.display.flip() 
 

V.   EXPERIMENT 
Using the game methodology as mentionted in Chapter IV, 

the program will output a blank canvas and as the user click the 
canvas, random shape will appear and the algorithm will try to 
find a path to solve the current nodes. 

 

 
Fig 9. First Experiment 

 
Fig 9 shows the first game strategy, that is to avoid duplicate 

station. The order of the circuit is circle, rectangle, circle, 
rectangle. Fig 9 also shows the second game strategy, to prefer 
loops to point-to-point lines. Loops are better than straight line 
becausse loops having less and equal time to reach station 
respectively. 
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Fig 10. Second Experiment 

 
Fig 10 shows the another example of the game strategy being 

implemented in the algorithm, even though it is better to use the 
unique shape to connect between loops, but the distances are 
much longer to reach the unique shape as the line connections. 

 

 
Fig 11. Third Experiment 

 
Fig 11 shows that a more dynamic the algorithm can be. There 

are two adjacent that are so close in the middle. The algorithm 
decided that it is more effective to connect two of the close one. 

 

 
Fig 12. Fourth Experiment 

 
As problems described in Chapter IV, the experiment 

designed to find the design the optimal route to minimize travel 
time and maximize passenger satisfaction, adapting to dynamic 
changes such as new station appearances and varying passenger 
demand, and balancing the trade-offs between shortest paths, 
resource allocation, and network efficiency. 

 
 

VI.   CONCLUSION 
This study explores strategies and algorithmic approaches for 

optimizing the Mini Metro game network, focusing on dynamic 
graph-based solutions. The findings indicate that prioritizing 
unique station connections and incorporating loops into the 
network design can significantly enhance efficiency by 
minimizing travel time and ensuring better accessibility. Loops, 

in particular, demonstrate their superiority over point-to-point 
connections, offering more robust and adaptable networks. 
Additionally, the algorithm shows promise in optimizing 
connections by prioritizing proximity, effectively reducing 
travel distances and improving connectivity. 

However, the algorithm faces significant limitations in 
handling the inherent randomness of the game. It does not 
account for unpredictable station placement, varying passenger 
demands, or the dynamic rewards and upgrades that emerge 
during gameplay, such as additional rail lines, new trains, or 
station enhancements. These factors add complexity and require 
advanced computation and more sophisticated decision-making 
models. Moreover, game mechanics such as bridge placement 
and congestion management further challenge the algorithm's 
adaptability and scalability. 

Future research should address these limitations by 
developing adaptive algorithms capable of dynamically 
adjusting to the game’s randomness and evolving network 
structure. Incorporating multi-objective optimization 
techniques, predictive modeling for station and passenger 
behavior, and real-time decision-making frameworks will 
enhance the algorithm's performance. Additionally, testing 
scalability on larger networks and integrating insights from 
gameplay dynamics can ensure practical applicability and 
improved efficiency. By tackling these challenges, future work 
can significantly advance the effectiveness of graph-based 
strategies in dynamic systems like Mini Metro.  

 
 

VII.   APPENDIX 
1. Source code: 

https://github.com/barruadi/mini-metro-graph 
 

2. Explanation Video: 
https://youtu.be/Yenf0Ahhv6Q  
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