
Makalah IF1220 Discrete Mathematics – Semester I Tahun 2024/2025

Exploring Optimal Path Solutions in Mini Metro
Game Through Graph Analysis and Game Strategy

Barru Adi Utomo - 135231011

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1barru.adi@gmail.com, 13523101@std.stei.itb.ac.id

Abstract— Mini Metro, a dynamic subway simulation game,
mirrors real-world transportation challenges by requiring players
to connect stations, manage passenger flow, and adapt to evolving
demands. This study applies graph theory and optimization
algorithms to model stations as nodes and routes as edges,
optimizing network performance. Strategies like prioritizing loops
over linear paths and proximity-based connections were evaluated,
highlighting their effectiveness in reducing travel time and
enhancing accessibility. Future work should focus on adaptive
algorithms and predictive modeling to improve optimization and
scalability. This research bridges theoretical graph algorithms and
practical gameplay strategies.

Keywords—Mini Metro, Graph theory, Railway network,

Algorithm optimization.

I. INTRODUCTION
In modern game design, optimization challenges often mirror

real-world problems, particularly in transportation and logistics.
The game Mini Metro exemplifies this by simulating the
creation and management of a subway system. Players must
connect stations, adapt to dynamically emerging demands, and
ensure efficient passenger transportation under resource
constraints.

Fig 1. Mini Metro Game

The core of Mini Metro's mechanics aligns closely with graph

theory, where stations can be modeled as nodes, and routes as
edges. Solving the problem of optimal pathfinding in such a
system is not only critical for achieving high scores in the game
but also provides a microcosm of real-world transportation
challenges. Traditional optimization algorithms, such as
Dijkstra's or Minimum Spanning Tree, offer potential solutions

to these challenges by identifying efficient paths and minimizing
congestion.

Fig 2. Mini Metro Gameplay

This study explores the application of graph analysis and

strategic gameplay to optimize routes in Mini Metro. By
simulating gameplay scenarios and applying graph-based
algorithms, this research aims to uncover strategies that enhance
network efficiency and provide players with actionable insights.
Furthermore, it delves into how these strategies adapt to
dynamic changes, such as the emergence of new stations or
increased passenger load, replicating the evolving complexities
of real-world networks.

Through this exploration, we bridge the gap between
theoretical graph algorithms and practical game strategies,
contributing both to game optimization and broader applications
in dynamic system management.

II. GRAPH

A graph is a mathematical structure used to represent
relationships or connections between objects. It consists of
vertices (or nodes), which represent the objects, and edges (or
links), which represent the connections between them [1].

A. Graph Terminology
a. Adjacent

Two vertices in a graph are considered adjacent if there is an
edge connecting them. This indicates a direct relationship
between the two nodes, such as a direct route between stations
in Mini Metro. For instance, if Station A is directly connected to
Station B, these two stations are adjacent in the graph
representation.

mailto:barru.adi@gmail.com
mailto:13523101@std.stei.itb.ac.id

Makalah IF1220 Discrete Mathematics – Semester I Tahun 2024/2025

b. Incidency

The relationship between a vertex and an edge is known as
incidency. A vertex is incident to an edge if it is one of the edge’s
endpoints. In the Mini Metro network, a station is incident to all
the routes that pass through it. For example, if a route connects
Station A to Station B, both stations are incident to the edge
representing that route.

c. Isolated Vertex

Fig 3. Isolated Vertex

A vertex with no edges connecting it to any other vertex is

called an isolated vertex. Such vertices represent stations in the
Mini Metro network that are not part of any route, making them
inaccessible to passengers. Identifying and minimizing isolated
vertices is crucial for ensuring a fully connected transportation
network.

d. Degree

Fig 4. Graph Degree

The degree of a vertex is defined as the number of edges

incident to it, representing the number of direct connections a
station has to other stations. In directed graphs, the degree can
be further classified into in-degree (the number of incoming
connections) and out-degree (the number of outgoing
connections). For example, a station connected to three other
stations would have a degree of three.

e. Path

Fig 5. Graph Path

A path in a graph is a sequence of vertices connected by

edges, where each edge is traversed only once [2]. In Mini
Metro, a path corresponds to a passenger’s journey from one
station to another, passing through a series of connected routes.
Paths are fundamental for understanding the movement of
passengers and optimizing their travel times.

f. Circuit

Fig 6. Graph Circuit

A circuit is a closed path that starts and ends at the same

vertex, with no edge repeated [2]. Circuits are commonly used
in transportation systems to design loop routes, ensuring
efficient movement across a network. In Mini Metro, a circuit
represent a line that allows trains to travel around a set of
stations without the need to reverse direction.

g. Weighted Graph

Fig 7. Weighted Graph

A weighted graph assigns numerical values (weights) to its

edges, often representing costs, distances, or travel times [3]. In
Mini Metro, weights can be used to model factors such as travel
time between stations or congestion levels on a route. Weighted
graphs are essential for implementing optimization algorithms
to find the most efficient paths.

B. Euler Path and Circuit
An Euler Path is a path in a graph that traverses each edge

exactly once. It does not need to start and end at the same vertex.
For a graph to have an Euler track all edges in the graph must be
connected and exactly two vertices in the graph have an odd
degree [4].

C. Graph Coloring

Fig 8. Graph Coloring

Graph coloring is the assignment of colors to the vertices of a

graph such that no two adjacent vertices share the same color.
This is known as vertex coloring. The minimum number of
colors required to achieve this is called the chromatic number of
the graph [5]. In Mini Metro, graph coloring is used to

Makalah IF1220 Discrete Mathematics – Semester I Tahun 2024/2025

differenciate station shapes so that it optimize the train
passanger.

III. ALGORITHM
 An algorithm is a finite set of well-defined instructions used to
solve a specific problem or perform a computation. In the
context of graph theory, algorithms are essential for processing,
analyzing, and optimizing graph structures to achieve desired
outcomes, such as finding shortest paths, minimizing costs, or
determining connectivity.

A. Djikstra
Dijkstra's Algorithm is a well-established method for solving

the shortest path problem in weighted graphs. Originally
proposed by Edsger W. Dijkstra in 1956, the algorithm
efficiently determines the shortest path from a single source
node to all other nodes within a graph [6]. Its applications span
diverse fields, including network routing, transportation
planning, and resource optimization.

For each unvisited neighbor v of u, calculate the alternative
distance via u as:

distance[v] = min(distance[v], distance[u] + weight(u,v)) (1)

If this alternative distance is smaller than the current distance,

update distance[v] and update its position in the priority queue.

IV. RESEARCH METHODOLOGY

A. Problem Definition
The Mini Metro game presents a dynamic optimization

problem, where stations appear unpredictably, and players must
connect them efficiently while managing passenger flow and
limited resources. This study seeks to address the following core
challenges:

- Designing optimal routes to minimize travel time and
maximize passenger satisfaction.

- Adapting to dynamic changes such as new station
appearances and varying passenger demand.

- Balancing the trade-offs between shortest paths, resource
allocation, and network efficiency.

To address these challenges, the research models the game
using graph theory, where stations represent nodes, and routes
represent weighted edges. By analyzing the problem with graph-
based algorithms, the study aims to uncover strategies that
improve gameplay performance and offer broader insights into
dynamic system optimization.

Python libraries that are being used are NetworkX, PyGame,
Random, and Math
Import library
import pygame
import networkx as nx
import random
import math

B. Data Collection
Data is collected directly from Mini Metro gameplay and

replicate in python script. Gameplay data includes station
locations, passenger destinations, and route configurations. For
instance, random coordinates from the gameplay are projected
into the replica, and connections are established based on certain
algorithm. This dataset serves as the foundation for creating the
graph representation of the game’s network and testing
optimization strategies.

Variables

WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
RED = (255, 0, 0)
GREEN = (0, 255, 0)

station_type = [
 'square', 'circle', 'triangle',
 'square', 'circle', 'triangle',
 'square', 'circle', 'triangle',
 'square', 'circle', 'triangle',
 'unique'
]

node_positions = {
 'circle': {},
 'square': {},
 'triangle': {},
 'unique': {}
}

global_node_id = 1
global_circle_count = 0
global_square_count = 0
global_triangle_count = 0
global_unique_count = 0

C. Graph Representation
The collected data is transformed into a graph representation

using NetworkX, a Python library for graph manipulation.

Initialization

pygame.init()

screen = pygame.display.set_mode((800, 600))

graph = nx.Graph()

Nodes represent stations, each assigned attributes such as

location (coordinates) and type (e.g., circle, square, triangle, and
unique).

Edges represent connections between stations, weighted by
distance and game strategy. For example, a connection between
two stations is assigned a weight proportional to the Euclidean
distance between their coordinates. This graph serves as the
input for various algorithms, enabling the study to simulate and
analyze the Mini Metro network efficiently.

D. Algorithm and Game Strategy
There are a lot of game strategy. Game strategy will affect

algorithm that is going to be used. This game strategy is taken
from Hamy’s blog, where it talks about with this subject “Mini

Makalah IF1220 Discrete Mathematics – Semester I Tahun 2024/2025

Metro - 5 Beginner Tips to Reach Top 10% on the
Leaderboard”.

There are four main strategy that can be applied to this
algorithm:

- Avoid duplicate station
- Prefer loops to point-to-point lines
- Prefer line connections on unique stations

There are generally 4 types of stations: circle, triangle,
square, and unique shapes like star, plus oval, etc.

- Connect loops together with express trains

With that, this study requires a specific algorithm, and this is

the algorithm that is used.

Algorithm

def calculate_algorithm():
 lengths = {}
 for node1 in graph.nodes:
 for node2 in graph.nodes:
 if node1 != node2:
 pos1 =
graph.nodes[node1]['pos']
 pos2 =
graph.nodes[node2]['pos']
 length = math.sqrt((pos1[0]
- pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2)
 lengths[(node1, node2)] =
length

 circuits = []
 used_nodes = set()
 while True:
 circuit = []
 for shape in ['circle', 'square',
'triangle', 'unique']:
 nodes = [node for node in
node_positions[shape].keys() if node not in
used_nodes]
 if nodes:
 node = nodes[0]
 circuit.append(node)
 used_nodes.add(node)
 if len(circuit) >= 3:
 circuits.append(circuit)
 else:
 break

 for shape in ['circle', 'square',
'triangle']:
 nodes = [node for node in
node_positions[shape].keys() if node not in
used_nodes]
 if nodes:
 node = nodes[0]
 circuit.append(node)
 used_nodes.add(node)
 if len(circuit) >= 3:
 circuits.append(circuit)

 all_nodes = list(graph.nodes)
 for i in range(len(all_nodes)):
 node1 = all_nodes[i]
 node2 = all_nodes[(i + 1) %
len(all_nodes)]
 pos1 = graph.nodes[node1]['pos']

 pos2 = graph.nodes[node2]['pos']
 if node1 not in used_nodes or node2
not in used_nodes or
graph.nodes[node1]['shape'] == 'unique' or
graph.nodes[node2]['shape'] == 'unique':
 pygame.draw.line(screen, WHITE,
pos1, pos2, 2)
 graph.add_edge(node1, node2)

 * full algorithm is in github repository in Chapter VII

E. Visualization
Visualization using PyGame to minimize the randomness of

the station generated and the user can adjust where the station
will appear. The algorithm is also called each time the station
appeared.

Visualize

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 exit()

 elif event.type ==

pygame.MOUSEBUTTONDOWN:

 if event.button == 1:

 add_station(event.pos)

 draw_graph()

 calculate_algorithm()

 pygame.display.flip()

V. EXPERIMENT
Using the game methodology as mentionted in Chapter IV,

the program will output a blank canvas and as the user click the
canvas, random shape will appear and the algorithm will try to
find a path to solve the current nodes.

Fig 9. First Experiment

Fig 9 shows the first game strategy, that is to avoid duplicate

station. The order of the circuit is circle, rectangle, circle,
rectangle. Fig 9 also shows the second game strategy, to prefer
loops to point-to-point lines. Loops are better than straight line
becausse loops having less and equal time to reach station
respectively.

Makalah IF1220 Discrete Mathematics – Semester I Tahun 2024/2025

Fig 10. Second Experiment

Fig 10 shows the another example of the game strategy being

implemented in the algorithm, even though it is better to use the
unique shape to connect between loops, but the distances are
much longer to reach the unique shape as the line connections.

Fig 11. Third Experiment

Fig 11 shows that a more dynamic the algorithm can be. There

are two adjacent that are so close in the middle. The algorithm
decided that it is more effective to connect two of the close one.

Fig 12. Fourth Experiment

As problems described in Chapter IV, the experiment

designed to find the design the optimal route to minimize travel
time and maximize passenger satisfaction, adapting to dynamic
changes such as new station appearances and varying passenger
demand, and balancing the trade-offs between shortest paths,
resource allocation, and network efficiency.

VI. CONCLUSION
This study explores strategies and algorithmic approaches for

optimizing the Mini Metro game network, focusing on dynamic
graph-based solutions. The findings indicate that prioritizing
unique station connections and incorporating loops into the
network design can significantly enhance efficiency by
minimizing travel time and ensuring better accessibility. Loops,

in particular, demonstrate their superiority over point-to-point
connections, offering more robust and adaptable networks.
Additionally, the algorithm shows promise in optimizing
connections by prioritizing proximity, effectively reducing
travel distances and improving connectivity.

However, the algorithm faces significant limitations in
handling the inherent randomness of the game. It does not
account for unpredictable station placement, varying passenger
demands, or the dynamic rewards and upgrades that emerge
during gameplay, such as additional rail lines, new trains, or
station enhancements. These factors add complexity and require
advanced computation and more sophisticated decision-making
models. Moreover, game mechanics such as bridge placement
and congestion management further challenge the algorithm's
adaptability and scalability.

Future research should address these limitations by
developing adaptive algorithms capable of dynamically
adjusting to the game’s randomness and evolving network
structure. Incorporating multi-objective optimization
techniques, predictive modeling for station and passenger
behavior, and real-time decision-making frameworks will
enhance the algorithm's performance. Additionally, testing
scalability on larger networks and integrating insights from
gameplay dynamics can ensure practical applicability and
improved efficiency. By tackling these challenges, future work
can significantly advance the effectiveness of graph-based
strategies in dynamic systems like Mini Metro.

VII. APPENDIX
1. Source code:

https://github.com/barruadi/mini-metro-graph

2. Explanation Video:
https://youtu.be/Yenf0Ahhv6Q

VIII. ACKNOWLEDGMENT

I would like to express my gratitude to the individuals and
institution whose support and contributions have been
instrumental in the completion of this research:

1. God Almighty, thanks to His grace and guidance, this
paper can be completed.

2. Both parents who have been supportive for this
research.

3. Dr. Ir. Rinaldi Munir M.T. as the lecturer of the IF1220
Discrete Mathematics.

4. All of my friends, especially Azfa Radhiyya Hakim
and Rafif Farras who also support me in this research.

https://github.com/barruadi/mini-metro-graph
https://youtu.be/Yenf0Ahhv6Q

Makalah IF1220 Discrete Mathematics – Semester I Tahun 2024/2025

REFERENCES
[1] P. Zhang and G. Chartrand, "Introduction to graph theory," Tata McGraw-

Hill, vol. 2, pp. 2–1, 2006.
[2] J. A. Bondy, "Basic graph theory: paths and circuits," Handbook of

combinatorics, pp. 1–2, 1995.
[3] J. A. Bondy and G. Fan, "Cycles in weighted graphs," Combinatorica, vol.

11, pp. 191–205, 1991, Springer.
[4] N. O. Acosta and A. I. Tomescu, "Simplicity in Eulerian circuits:

Uniqueness and safety," Information Processing Letters, vol. 183, p.
106421, 2024, Elsevier.

[5] P. Jovanović, N. Pavlović, I. Belošević, and S. Milinković, "Graph
coloring-based approach for railway station design analysis and capacity
determination," European Journal of Operational Research, vol. 287, no.
1, pp. 348–360, 2020, Elsevier.

[6] M. Noto and H. Sato, "A method for the shortest path search by extended
Dijkstra algorithm," in SMC 2000 Conference Proceedings. 2000 IEEE
International Conference on Systems, Man, and Cybernetics: Cybernetics
evolving to systems, humans, organizations, and their complex
interactions (Cat. No. 0), vol. 3, pp. 2316–2320, 2000, IEEE.

STATEMENT
I hereby declare that this paper is my own writing, not an
adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 8 January 2024

Barru Adi Utomo
13523101

	I. Introduction
	II. Graph
	A. Graph Terminology
	B. Euler Path and Circuit
	C. Graph Coloring

	III. Algorithm
	An algorithm is a finite set of well-defined instructions used to solve a specific problem or perform a computation. In the context of graph theory, algorithms are essential for processing, analyzing, and optimizing graph structures to achieve desire...
	A. Djikstra

	IV. Research Methodology
	A. Problem Definition
	B. Data Collection
	C. Graph Representation
	D. Algorithm and Game Strategy
	E. Visualization

	V. Experiment
	VI. Conclusion
	VII. Appendix
	VIII. Acknowledgment
	References
	Statement

